Author/Authors :
Mar Matarin، نويسنده , , W. Mark Brown، نويسنده , , Sonja Scholz، نويسنده , , Javier Sim?n-S?nchez، نويسنده , , Hon-Chung Fung، نويسنده , , Dena Hernandez، نويسنده , , J Raphael Gibbs، نويسنده , , Fabienne Wavrant De Vrieze، نويسنده , , Cynthia Crews، نويسنده , , Angela Britton، نويسنده , , Carl D. Langefeld، نويسنده , , Thomas G Brott، نويسنده , , Robert D Brown Jr، نويسنده , , Bradford B Worrall، نويسنده , , Michael Frankel، نويسنده , , Scott Silliman، نويسنده , , L Douglas Case، نويسنده , , Andrew Singleton، نويسنده , , John A Hardy، نويسنده , , Stephen S. Rich، نويسنده , , et al.، نويسنده ,
Abstract :
Summary
Background
Despite evidence of a genetic role in stroke, the identification of common genetic risk factors for this devastating disorder remains problematic. We aimed to identify any common genetic variability exerting a moderate to large effect on risk of ischaemic stroke, and to generate publicly available genome-wide genotype data to facilitate others doing the same.
Methods
We applied a genome-wide high-density single-nucleotide-polymorphism (SNP) genotyping approach to a cohort of samples with and without ischaemic stroke (n=278 and 275, respectively), and did an association analysis adjusted for known confounders in a final cohort of 249 cases and 268 controls. More than 400 000 unique SNPs were assayed.
Findings
We produced more than 200 million genotypes in 553 unique participants. The raw genotypes of all the controls have been posted publicly in a previous study of Parkinsonʹs disease. From this effort, results of genotype and allele association tests have been publicly posted for 88% of stroke patients who provided proper consent for public release. Preliminary analysis of these data did not reveal any single locus conferring a large effect on risk for ischaemic stroke.
Interpretation
The data generated here comprise the first phase of a genome-wide association analysis in patients with stroke. Release of phase I results generated in these publicly available samples from each consenting individual makes this dataset a valuable resource for data-mining and augmentation.