Title of article :
Completeness of Combinations of Constructor Systems
Author/Authors :
AartMiddeldorp، نويسنده , , Yoshihito Toyama، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1993
Pages :
18
From page :
331
To page :
348
Abstract :
A term rewriting system is called complete if it is both confluent and strongly normalising. Barendregt and Klop showed that the disjoint union of complete term rewriting systems does not need to be complete. In other words, completeness is not a modular property of term rewriting systems. Toyama, Klop and Barendregt showed that completeness is a modular property of left-linear term rewriting systems. In this paper we show that it is sufficient to impose the constructor discipline for obtaining the modularity of completeness. This result is a simple consequence of a quite powerful divide and conquer technique for establishing completeness of such constructor systems. Our approach is not limited to systems which are composed of disjoint parts. The importance of our method is that we may decompose a given constructor system into parts which possibly share function symbols and rewrite rules in order to infer completeness. We obtain a similar technique for semi-completeness, i.e. the combination of confluence and weak normalisation.
Journal title :
Journal of Symbolic Computation
Serial Year :
1993
Journal title :
Journal of Symbolic Computation
Record number :
804943
Link To Document :
بازگشت