Title of article :
Irregular Primes and Cyclotomic Invariants to 12 Million
Author/Authors :
Joe Buhler، نويسنده , , Richard Crandall، نويسنده , , ReijoErnvall، نويسنده , , TaunoMets?nkyl?، نويسنده , , M. Amin Shokrollahi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
8
From page :
89
To page :
96
Abstract :
Computations of irregular primes and associated cyclotomic invariants were extended to all primes up to 12 million using multisectioning/convolution methods and a novel approach which originated in the study of Stickelberger codes Shokrollahi (1996). The latter idea reduces the problem to that of finding zeros of a polynomial overFpofdegree < (p − 1) / 2 among the quadratic nonresidues mod p. Use of fast polynomial gcd-algorithms gives anO (p log2ploglogp)-algorithm for this task. A more efficient algorithm, with comparable asymptotic running time, can be obtained by using Schönhage–Strassen integer multiplication techniques and fast multiple polynomial evaluation algorithms; this approach is particularly efficient when run on primes p for whichp − 1 has small prime factors. We also give some improvements on previous implementations for verifying the Kummer–Vandiver conjecture and for computing the cyclotomic invariants of a prime.
Journal title :
Journal of Symbolic Computation
Serial Year :
2001
Journal title :
Journal of Symbolic Computation
Record number :
805513
Link To Document :
بازگشت