Title of article :
Hybrid Sparse Resultant Matrices for Bivariate Polynomials
Author/Authors :
Carlos D’Andrea، نويسنده , , Ioannis Z. Emiris، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
We study systems of three bivariate polynomials whose Newton polygons are scaled copies of a single polygon. Our main contribution is to construct square resultant matrices, which are submatrices of those introduced by Cattaniet al. (1998), and whose determinants are nontrivial multiples of the sparse (or toric) resultant. The matrix is hybrid in that it contains a submatrix of Sylvester type and an additional row expressing the toricJacobian. If we restrict our attention to matrices of (almost) Sylvester-type and systems as specified above, then the algorithm yields the smallest possible matrix in general. This is achieved by strongly exploiting the combinatorics of sparse elimination, namely by a new piecewise-linear lifting. The major motivation comes from systems encountered in geometric modeling. Our preliminary Maple implementation, applied to certain examples, illustrates our construction and compares it with alternative matrices.
Journal title :
Journal of Symbolic Computation
Journal title :
Journal of Symbolic Computation