Title of article :
Cohomology, stratifications and parametric Gröbner bases in characteristic zero
Author/Authors :
Uli Walther، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
16
From page :
527
To page :
542
Abstract :
Let PK(n,d) be the set of polynomials in n variables of degree at most d over the field K of characteristic zero. We show that there is a number cn,d such that if f PK(n,d) then the algebraic de Rhamcohomology group HdRi(Kn Var(f)) has rank at most cn,d. We also show the existence of a bound cn,d,l for the ranks of de Rhamcohomology groups of complements of varieties in n-space defined by the vanishing of l polynomials in PK(n,d). In fact, if is the ithBetti number of the complement of the corresponding variety, we establish the existence of a -algebraic stratification on PK(n,d)l such that βi is constant on each stratum. The stratifications arise naturally from parametric Gröbner basis computations; we prove for parameter-insensitive weight orders in Weyl algebras the existence of specializing Gröbner bases
Keywords :
Parametric Gr¨obner bases , Stratifications , Cohomology
Journal title :
Journal of Symbolic Computation
Serial Year :
2003
Journal title :
Journal of Symbolic Computation
Record number :
805698
Link To Document :
بازگشت