Title of article :
Short rational functions for toric algebra and applications
Author/Authors :
J. A. De Loera، نويسنده , , D. Haws، نويسنده , , R. Hemmecke، نويسنده , , P. Huggins، نويسنده , , B. Sturmfels، نويسنده , , R. Yoshida، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
15
From page :
959
To page :
973
Abstract :
We encode the binomials belonging to the toric ideal IA associated with an integral d×n matrix A using a short sum of rational functions as introduced by Barvinok (Math. Operations Research 19 (1994) 769) and Barvinok and Woods (J. Amer. Math. Soc. 16 (2003) 957). Under the assumption that d and n are fixed, this representation allows us to compute a universal Gröbner basis and the reduced Gröbner basis of the ideal IA, with respect to any term order, in time polynomial in the size of the input. We also derive a polynomial time algorithm for normal form computations which replaces in this new encoding the usual reductions typical of the division algorithm. We describe other applications, such as the computation of Hilbert series of normal semigroup rings, and we indicate applications to enumerative combinatorics, integer programming, and statistics.
Keywords :
Gr¨obner basis , Toric ideals , Short rational function , Ehrhartpolynomial , lattice points , Magic cubes and squares , Barvinok’s algorithm , Hilbert series
Journal title :
Journal of Symbolic Computation
Serial Year :
2004
Journal title :
Journal of Symbolic Computation
Record number :
805791
Link To Document :
بازگشت