Title of article :
Cyclic resultants
Author/Authors :
Christopher J. Hillar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
We characterize polynomials having the same set of nonzero cyclic resultants. Generically, for a polynomial f of degree d, there are exactly 2d−1 distinct degree d polynomials with the same set of cyclic resultants as f. However, in the generic monic case, degree d polynomials are uniquely determined by their cyclic resultants. Moreover, two reciprocal (“palindromic”) polynomials giving rise to the same set of nonzero cyclic resultants are equal. In the process, we also prove a unique factorization result in semigroup algebras involving products of binomials. Finally, we discuss how our results yield algorithms for explicit reconstruction of polynomials from their cyclic resultants.
Keywords :
Binomial factorization , Cyclic resultant , Group rings , Toral endomorphisms
Journal title :
Journal of Symbolic Computation
Journal title :
Journal of Symbolic Computation