Title of article :
On inverse systems and squarefree decomposition of zero-dimensional polynomial ideals
Author/Authors :
Werner Hei?، نويسنده , , Ulrich Oberst، نويسنده , , FRANZ PAUER، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
24
From page :
261
To page :
284
Abstract :
Let I be a zero-dimensional ideal in a polynomial ring F[s]:=F[s1,…,sn] over an arbitrary field F. We show how to compute an F-basis of the inverse system I of I. We describe the F[s]-module I by generators and relations and characterise the minimal length of a system of F[s]-generators of I . If the primary decomposition of I is known, such a system can be computed. Finally we generalise the well-known notion of squarefree decomposition of a univariate polynomial to the case of zero-dimensional ideals in F[s] and present an algorithm to compute this decomposition.
Keywords :
Dual basis , Squarefree decomposition , Inverse system , Systems of generators of minimal length
Journal title :
Journal of Symbolic Computation
Serial Year :
2006
Journal title :
Journal of Symbolic Computation
Record number :
805915
Link To Document :
بازگشت