Title of article :
A delineability-based method for computing critical sets of algebraic surfaces
Author/Authors :
Juan Gerardo Alcazar، نويسنده , , Josef Schicho، نويسنده , , Juan Rafael Sendra، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
14
From page :
678
To page :
691
Abstract :
In this paper, we address the problem of determining a real finite set of z-values where the topology type of the level curves of a (maybe singular) algebraic surface may change. We use as a fundamental and crucial tool McCallum’s theorem on analytic delineability of polynomials (see [McCallum, S., 1998. An improved projection operation for cylindrical algebraic decomposition. In: Caviness, B.F., Johnson, J.R. (Eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer Verlag, pp. 242–268]). Our results allow to algorithmically compute this finite set by analyzing the real roots of a univariate polynomial; namely, the double discriminant of the implicit equation of the surface. As a consequence, an application to offsets is shown.
Keywords :
Delineability , Topology of level curves , Level curves , Topology of surfaces
Journal title :
Journal of Symbolic Computation
Serial Year :
2007
Journal title :
Journal of Symbolic Computation
Record number :
806012
Link To Document :
بازگشت