Title of article :
On actions of Hopf algebras with cocommutative coradical
Author/Authors :
K. I. Beidar، نويسنده , , B. Torrecillas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
18
From page :
13
To page :
30
Abstract :
Let H be an m-dimensional Hopf algebra with left integral t, let R be a left H-module algebra with 1 containing an element γ with trightwards wave arrowγ=1, and let S=RH. It is proved that R is fully integral over S, every simple right R-module has a length ≤m over S and J(S)msubset of or equal toJ(R)∩Ssubset of or equal toJ(S), where J(R) is the Jacobson radical of R, provided that H is pointed. Finally, it is shown that if S is a PI algebra, then R is a PI algebra as well, provided that H has a cocommutative coradical.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2001
Journal title :
Journal of Pure and Applied Algebra
Record number :
816847
Link To Document :
بازگشت