Title of article :
On Auslanderʹs n-gorenstein rings Original Research Article
Author/Authors :
Yasuo Iwanaga، نويسنده , , Hideo Sato، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
16
From page :
61
To page :
76
Abstract :
According to Auslander, a Noetherian ring R is called n-Gorenstein for n ≥ 1 if in a minimal injective resolution 0 → RR → E0 → E1 → … → En →, …, the flat dimension of each Ei is at most i for i = 0, 1, …, n − 1. We prove that for an n-Gorenstein ring R of self-injective dimension n, the last term En in a minimal injective resolution of RR has essential socle. We also prove that the 1-Gorenstein property is inherited by a maximal quotient ring, and as a related result, we characterize a Noetherian ring of dominant dimension at least 2.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
1996
Journal title :
Journal of Pure and Applied Algebra
Record number :
817531
Link To Document :
بازگشت