Title of article :
On the coefficients of the Hilbert polynomial Original Research Article
Author/Authors :
J. Elias، نويسنده , , M. E. Rossi، نويسنده , , G. Valla، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Abstract :
Let (A, m) be Cohen-Macaulay local ring with maximal ideal m and dimension d. It is well known that for n> 0, the length of the A-module A/mn is given by image. The integers paper an ei are called the Hilbert coefficients of A.
In this paper an upper bound is given for e2 in terms of e0, e1 and the embedded codimension h of A. If d ≤ 2 and the bound is reached, A has a specified Hilbert function. Similarly, in the one-dimensional case, we study the extremal behaviour with respect to the known inequality image.
Journal title :
Journal of Pure and Applied Algebra
Journal title :
Journal of Pure and Applied Algebra