Title of article :
Hecke actions on the K-theory of commutative rings Original Research Article
Author/Authors :
Kevin Hutchinson، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
18
From page :
181
To page :
198
Abstract :
We prove that in the case of a Galois extension of commutative rings R subset of- S with Galois group G, the correspondence H → Ki(SH) (H ≤ G) defines a cohomological G-functor. This gives a partial generalisation of results of Roggenkamp, Scott and Verschoren who consider the case of Picard groups. We use the equivalence of cohomological G-functors and Hecke actions (Yoshida, 1983) to derive some results about the structure of K-theory groups of rings of algebraic integers.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
1996
Journal title :
Journal of Pure and Applied Algebra
Record number :
817632
Link To Document :
بازگشت