Title of article :
Criteria for unique factorization in integral domains Original Research Article
Author/Authors :
D. D. Anderson، نويسنده , , Scott T. Chapman، نويسنده , , Franz Halter-Koch، نويسنده , , Muhammad Zafrullah، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
14
From page :
205
To page :
218
Abstract :
Let R be an integral domain. In this paper, we introduce a sequence of factorization properties which are weaker than the classical UFD criteria. We give several examples of atomic nonfactorial monoids which satisfy these conditions, but show for several classes of integral domains of arithmetical interest that these factorization properties force unique factorization. In particular, we show that if R satisfies any of our properties and is a Krull domain with finite divisor class group, a nonmaximal order in an algebraic number field, or a generalized Cohen-Kaplansky domain, then R in fact must be factorial.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
1998
Journal title :
Journal of Pure and Applied Algebra
Record number :
817911
Link To Document :
بازگشت