Title of article :
Transitive action of Lie algebras
Author/Authors :
L. Grünenfelder، نويسنده , , M. Omladi?، نويسنده , , H. Radjavi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
7
From page :
87
To page :
93
Abstract :
The action of a set image of linear operators on a vector space image is, by definition, k-fold transitive if given linearly independent vectors {x1,x2,…,xk} and arbitrary vectors {y1,y2,…,yk}, there is a member A of image with Axi=yi for all i. It is shown that if the action of a Lie algebra of complex matrices is two-fold transitive, then it is either gln(C) or, if n>2, the Lie subalgebra sln(C). Transitive action is not sufficient to yield this conclusion. Infinite-dimensional analogues are also considered.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2005
Journal title :
Journal of Pure and Applied Algebra
Record number :
818368
Link To Document :
بازگشت