Title of article :
On the quiver Grassmannian in the acyclic case
Author/Authors :
Philippe Caldero، نويسنده , , Markus Reineke، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
12
From page :
2369
To page :
2380
Abstract :
Let A be the path algebra of a quiver Q with no oriented cycle. We study geometric properties of the Grassmannians of submodules of a given A-module M. In particular, we obtain some sufficient conditions for smoothness, polynomial cardinality and we give different approaches to Euler characteristics. Our main result is the positivity of Euler characteristics when M is an exceptional module. This solves a conjecture of Fomin and Zelevinsky for acyclic cluster algebras.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2008
Journal title :
Journal of Pure and Applied Algebra
Record number :
819004
Link To Document :
بازگشت