Title of article :
The category of 3-computads is not cartesian closed
Author/Authors :
Mihaly Makkai، نويسنده , , Marek Zawadowski، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
4
From page :
2543
To page :
2546
Abstract :
We show, using [A. Carboni, P.T. Johnstone, Connected limits, familial representability and Artin glueing, Math. Structures Comput. Sci. 5 (1995) 441–459] and Eckmann–Hilton argument, that the category of 3-computads is not cartesian closed. As a corollary we get that neither the category of all computads nor the category of n-computads, for n>2, do form locally cartesian closed categories, and hence elementary toposes.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2008
Journal title :
Journal of Pure and Applied Algebra
Record number :
819018
Link To Document :
بازگشت