Title of article :
Variational principles for indefinite eigenvalue problems Original Research Article
Author/Authors :
Paul Binding، نويسنده , , Qiang Ye، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
12
From page :
251
To page :
262
Abstract :
Let A and B be N × N complex Hermitian matrices where B is nonsingular but neither A nor B need be definite. Let Sk denote the linear subspaces of imageN of codimension k, and let σ±k = sup{inf{x* Ax : x* Bx = ±1, x set membership, variant S} : S set membership, variant Sk−1}. Assuming that the real eigenvalues λ of the problem imageAχ = λBχ are semisimple, we show how to calculate the value of each σ±k and the corresponding inf sups. In consequence we show precisely which eigenvalues of (*) can be obtained by variational formulae of the above types.
Journal title :
Linear Algebra and its Applications
Serial Year :
1995
Journal title :
Linear Algebra and its Applications
Record number :
821382
Link To Document :
بازگشت