Title of article :
Variations on a theorem of Ryser Original Research Article
Author/Authors :
Dasong Cao، نويسنده , , V. Chv?tal، نويسنده , , A. J. Hoffman، نويسنده , , Clinton A. Vince، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
8
From page :
215
To page :
222
Abstract :
A famous theorem of Ryser asserts that a v × v zero-one matrix A satisfying AAT = (k − λ)I + λJ with k ≠ λ must satisfy k + (v − 1) λ = k2 and ATA = (k − λ)I + λJ; such a matrix A is called the incidence matrix of a symmetric block design. We present a new, elementary proof of Ryserʹs theorem and give a characterization of the incidence matrices of symmetric block designs that involves eigenvalues of AAT.
Journal title :
Linear Algebra and its Applications
Serial Year :
1997
Journal title :
Linear Algebra and its Applications
Record number :
822102
Link To Document :
بازگشت