Title of article :
Eigenvalue interlacing and weight parameters of graphs Original Research Article
Author/Authors :
M.A. Fiol، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
27
From page :
275
To page :
301
Abstract :
Eigenvalue interlacing is a versatile technique for deriving results in algebraic combinatorics. In particular, it has been successfully used for proving a number of results about the relation between the (adjacency matrix or Laplacian) spectrum of a graph and some of its properties. For instance, some characterizations of regular partitions, and bounds for some parameters, such as the independence and chromatic numbers, the diameter, the bandwidth, etc., have been obtained. For each parameter of a graph involving the cardinality of some vertex sets, we can define its corresponding weight parameter by giving some “weights” (that is, the entries of the positive eigenvector) to the vertices and replacing cardinalities by square norms. The key point is that such weights “regularize” the graph, and hence allow us to define a kind of regular partition, called “pseudo-regular,” intended for general graphs. Here we show how to use interlacing for proving results about some weight parameters and pseudo-regular partitions of a graph. For instance, generalizing a well-known result of Lovász, it is shown that the weight Shannon capacity Θ* of a connected graph Γ, with n vertices and (adjacency matrix) eigenvalues λ1 > λ2 greater-or-equal, slanted … greater-or-equal, slanted λn, satisfies image where Θ is the (standard) Shannon capacity and v is the positive eigenvector normalized to have smallest entry 1. In the special case of regular graphs, the results obtained have some interesting corollaries, such as an upper bound for some of the multiplicities of the eigenvalues of a distance-regular graph. Finally, some results involving the Laplacian spectrum are derived.
Keywords :
Adjacency matrix , Eigenvalue interlacing , Laplacian matrix
Journal title :
Linear Algebra and its Applications
Serial Year :
1999
Journal title :
Linear Algebra and its Applications
Record number :
822694
Link To Document :
بازگشت