Title of article :
Unifying unitary and hyperbolic transformations Original Research Article
Author/Authors :
Adam Bojanczyk، نويسنده , , Sanzheng Qiao، نويسنده , , Allan O. Steinhardt، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
15
From page :
183
To page :
197
Abstract :
In this paper, we describe unified formulas for unitary and hyperbolic reflections and rotations, and show how these unified transformations can be used to compute a Hermitian triangular decomposition image of a strongly nonsingular indefinite matrix  given in the form Â=X1HX1+αX2HX2, α=±1. The unification is achieved by the introduction of signature matrices which determine whether the applicable transformations are unitary, hyperbolic, or their generalizations. We derive formulas for the condition numbers of the unified transformations, propose pivoting strategies for lowering the condition number of the transformations, and present a unified stability analysis for applying the transformations to a matrix.
Keywords :
Cholesky factor modification , Hyperbolic Householder transformation , Error analysis , Hyperbolic rotation
Journal title :
Linear Algebra and its Applications
Serial Year :
2000
Journal title :
Linear Algebra and its Applications
Record number :
823065
Link To Document :
بازگشت