Title of article :
Uniqueness of matrix square roots and an application Original Research Article
Author/Authors :
Michael I. Gekhtman and Charles R. Johnson، نويسنده , , Kazuyoshi Okubo، نويسنده , , Robert Reams، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
10
From page :
51
To page :
60
Abstract :
Let image. Let σ(A) denote the spectrum of A, and F(A) the field of values of A. It is shown that if σ(A)∩(−∞,0]=empty set︀, then A has a unique square root image with σ(B) in the open right (complex) half plane. This result and Lyapunovʹs theorem are then applied to prove that if F(A)∩(−∞,0]=empty set︀, then A has a unique square root with positive definite Hermitian part. We will also answer affirmatively an open question about the existence of a real square root image for image with F(A)∩(−∞,0]=empty set︀, where the field of values of B is in the open right half plane.
Keywords :
Matrix square root , Block tridiagonal , Field of values , Lyapunov’s theorem
Journal title :
Linear Algebra and its Applications
Serial Year :
2001
Journal title :
Linear Algebra and its Applications
Record number :
823169
Link To Document :
بازگشت