Title of article :
Intersections of nest algebras in finite dimensions Original Research Article
Author/Authors :
P. A. Fillmore، نويسنده , , W. E. Longstaff، نويسنده , , G. W. MacDonald H. Radjavi، نويسنده , , Y. Zhong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
13
From page :
185
To page :
197
Abstract :
If image are maximal nests on a finite-dimensional Hilbert space H, the dimension of the intersection of the corresponding nest algebras is at least dim H. On the other hand, there are three maximal nests whose nest algebras intersect in the scalar operators. The dimension of the intersection of two nest algebras (corresponding to maximal nests) can be of any integer value from n to n(n+1)/2, where n=dim H. For any two maximal nests image there exists a basis {f1,f2,…,fn} of H and a permutation π such that image and image where Mi= span{f1,f2,…,fi} and Ni= span{fπ(1),fπ(2),…,fπ(i)}. The intersection of the corresponding nest algebras has minimum dimension, namely dim H, precisely when π(j)=n−j+1,1less-than-or-equals, slantjless-than-or-equals, slantn. Those algebras which are upper-triangular matrix incidence algebras, relative to some basis, can be characterised as intersections of certain nest algebras.
Keywords :
Permutation , Basis , Nest algebra
Journal title :
Linear Algebra and its Applications
Serial Year :
2002
Journal title :
Linear Algebra and its Applications
Record number :
823584
Link To Document :
بازگشت