Title of article :
On the Craig–Sakamoto theorem and Olkin’s determinantal result Original Research Article
Author/Authors :
Masaya Matsuura، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
3
From page :
321
To page :
323
Abstract :
Let A and B be any n×n real symmetric matrices. The following fact is well known: If In−αA−βB=In−αAIn−βB for any α, image, then AB=0. There exist various proofs. In this paper, we refine Olkin’s method [Linear Algebra Appl. 264 (1997) 217]. Furthermore, his determinantal result is generalized.
Keywords :
Frobenius norm , Craig–Sakamoto theorem , Determinant
Journal title :
Linear Algebra and its Applications
Serial Year :
2003
Journal title :
Linear Algebra and its Applications
Record number :
823876
Link To Document :
بازگشت