Title of article :
Ring isomorphisms and pentagon subspace lattices Original Research Article
Author/Authors :
Pengtong Li، نويسنده , , Jipu Ma، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
8
From page :
59
To page :
66
Abstract :
If K, L and M are (closed) subspaces of a Banach space X satisfying K∩M=(0), Klogical orL=X and Lsubset ofM, then image is called a pentagon subspace lattice on X. Let image be a pentagon subspace lattice on a complex Banach space Xi, for i=1, 2. Then every ring isomorphism from image onto image is a quasi-spatially induced linear or conjugate-linear algebra isomorphism.
Keywords :
Ring isomorphisms , Quasi-spatiality , Pentagon subspace lattices , Conjugate-linearity
Journal title :
Linear Algebra and its Applications
Serial Year :
2003
Journal title :
Linear Algebra and its Applications
Record number :
823934
Link To Document :
بازگشت