Title of article :
Permanents of doubly stochastic trees
Author/Authors :
Mohammad H. Ahmadi، نويسنده , , Jae-Hyun Baek، نويسنده , , Suk-Geun Hwang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
10
From page :
15
To page :
24
Abstract :
For a tree T of order n, let Ω(T)={X Ωn X A(T)+In}, where Ωn denotes the set of all doubly stochastic matrices of order n and A(T) denotes the adjacency matrix of T, and let μ(T) denote the minimum permanent of matrices in Ω(T). Let Pn denote the path of length n−1 and K1,n−1 the complete bipartite graph on 1+(n−1) vertices. In this paper, it is shown that Pn and K1,n−1 are the only trees with minimal and maximal μ-values respectively among all trees of order n.
Keywords :
Doubly stochastic matrix , Permanents , tree
Journal title :
Linear Algebra and its Applications
Serial Year :
2003
Journal title :
Linear Algebra and its Applications
Record number :
824002
Link To Document :
بازگشت