Title of article :
On the Laplacian spectral radius of a graph
Author/Authors :
Huiqing Liu، نويسنده , , Mei Lu & Mary B. Watson-Manheim، نويسنده , , Feng Tian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
7
From page :
135
To page :
141
Abstract :
Let G be a simple graph with n vertices and m edges and Gc be its complement. Let δ(G)=δ and Δ(G)=Δ be the minimum degree and the maximum degree of vertices of G, respectively. In this paper, we present a sharp upper bound for the Laplacian spectral radius as follows: Equality holds if and only if G is a connected regular bipartite graph. Another result of the paper is an upper bound for the Laplacian spectral radius of the Nordhaus–Gaddum type. We prove that
Keywords :
Minimum degree , Laplacian spectral radius , Maximum degree
Journal title :
Linear Algebra and its Applications
Serial Year :
2004
Journal title :
Linear Algebra and its Applications
Record number :
824141
Link To Document :
بازگشت