Title of article :
On Kreinʹs formula in indefinite metric spaces Original Research Article
Author/Authors :
Sergey Belyi، نويسنده , , Eduard Tsekanovskii، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
18
From page :
305
To page :
322
Abstract :
In this paper we extend some of the recent results in connection with the Krein resolvent formula which provides a complete description of all canonical resolvents and utilizes Weyl–Titchmarsh functions in the spaces with indefinite metrics. We show that coefficients in Kreinʹs formula can be expressed in terms of analogues of the von Neumann parametrization formulas in the indefinite case. We consider properties of Weyl–Titchmarsh functions and show that two Weyl–Titchmarsh functions corresponding to π-self-adjoint extensions of a densely defined π-symmetric operator are connected via linear-fractional transformation with the coefficients presented in terms of von Neumannʹs parameters.
Keywords :
Krein’s formula , Pontryagin space , Indefinite metrics
Journal title :
Linear Algebra and its Applications
Serial Year :
2004
Journal title :
Linear Algebra and its Applications
Record number :
824263
Link To Document :
بازگشت