Title of article :
Maximizing traces of matrix functions Original Research Article
Author/Authors :
S. W. Drury، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
14
From page :
221
To page :
234
Abstract :
Let X and Y be n×n Hermitian matrices with eigenvalues x1greater-or-equal, slantedx2greater-or-equal, slantedcdots, three dots, centeredgreater-or-equal, slantedxn and y1greater-or-equal, slantedy2greater-or-equal, slantedcdots, three dots, centeredgreater-or-equal, slantedyn respectively. We establish the inequalityimagetr(phi(X+Y))less-than-or-equals, slantmaxσset membership, variantSn∑j=1nphi(xj+yσ(j)),where Sn denotes the group of permutations and for phi satisfying a certain analytical condition. We establish also the inequalityimagetr(phi(AB))less-than-or-equals, slantmaxσset membership, variantSn∑j=1nphi(ajbσ(j))for A and B be positive definite n×n matrices with eigenvalues a1greater-or-equal, slanteda2greater-or-equal, slantedcdots, three dots, centeredgreater-or-equal, slantedan>0 and b1greater-or-equal, slantedb2greater-or-equal, slantedcdots, three dots, centeredgreater-or-equal, slantedbn>0 respectively and where tmaps tophi(et) satisfies the same analytical condition. As a consequence of the first of these inequalities, a conjecture of Drury, Liu, Lu, Puntanen and Styan concerning the sum of squares of canonical correlations is settled in the affirmative.
Keywords :
Majorization of eigenvalues , Canonical correlations , Trace inequalities
Journal title :
Linear Algebra and its Applications
Serial Year :
2004
Journal title :
Linear Algebra and its Applications
Record number :
824514
Link To Document :
بازگشت