Title of article :
Convergence of logarithmic trace inequalities via generalized Lie–Trotter formulae Original Research Article
Author/Authors :
Takayuki Furuta، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
20
From page :
353
To page :
372
Abstract :
We shall extend logarithmic trace inequalities shown by Bebiano et al. [N. Bebiano, R. Lemos, J. da Providencia, Inequalities for quantum relative entropy, preprint] and also by Hiai and Petz [The Golden–Thompson trace inequality is complemented, Linear Algebra Appl. 181 (1993) 153–185], by applying log majorization equivalent to an order preserving operator inequality. We shall generalize the Lie–Trotter formulae, which extend the original Lie–Trotter formula, and the α-mean variant of the original Lie–Trotter formula in Hiai–Petz [Linear Algebra Appl. 181 (1993) 153–185]. By using this generalized Lie–Trotter formulae, we shall consider the convergence of certain logarithmic trace inequalities, as some extensions of Bebiano et al. [N. Bebiano, R. Lemos, J. da Providencia, Inequalities for quantum relative entropy, preprint] and Hiai–Petz [The Golden–Thompson trace inequality is complemented, Linear Algebra Appl. 181 (1993) 153–185].
Keywords :
Log majorization , Logarithmic trace inequality , Generalized Lie–Trotter formula
Journal title :
Linear Algebra and its Applications
Serial Year :
2005
Journal title :
Linear Algebra and its Applications
Record number :
824704
Link To Document :
بازگشت