Title of article :
On the diagonal scaling of Euclidean distance matrices to doubly stochastic matrices Original Research Article
Author/Authors :
Michael I. Gekhtman and Charles R. Johnson، نويسنده , , Robert D. Masson، نويسنده , , Michael W. Trosset، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
12
From page :
253
To page :
264
Abstract :
We consider the problem of scaling a nondegenerate predistance matrix A to a doubly stochastic matrix B. If A is nondegenerate, then there exists a unique positive diagonal matrix C such that B = CAC. We further demonstrate that, if A is a Euclidean distance matrix, then B is a spherical Euclidean distance matrix. Finally, we investigate how scaling a nondegenerate Euclidean distance matrix A to a doubly stochastic matrix transforms the points that generate A. We find that this transformation is equivalent to an inverse stereographic projection.
Keywords :
Stereographic projection , distance geometry
Journal title :
Linear Algebra and its Applications
Serial Year :
2005
Journal title :
Linear Algebra and its Applications
Record number :
824722
Link To Document :
بازگشت