Title of article :
A min–max theorem for complex symmetric matrices
Author/Authors :
Jeffrey Danciger، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
8
From page :
22
To page :
29
Abstract :
We optimize the form Re xtTx to obtain the singular values of a complex symmetric matrix T. We prove that for , whereT is an n × n complex symmetric matrix having singular values σ1 σn. We also show that the singular values missed in this theorem (i.e. σ2, σ4, …) are obtained by a similar optimization over real subspaces.
Keywords :
Complex symmetric matrix , Min–max principle , Singular value , Takagi decomposition
Journal title :
Linear Algebra and its Applications
Serial Year :
2006
Journal title :
Linear Algebra and its Applications
Record number :
825012
Link To Document :
بازگشت