Title of article :
A perturbation bound for the eigenvalues of a singular diagonalizable matrix
Author/Authors :
Stanley C. Eisenstat، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Let A be a singular, diagonalizable matrix with group inverse A#, and let A + E be a perturbation of A. We show that each eigenvalue μ of A + E is an O( A#E 2) relative perturbation of a nonzero eigenvalue of A, unless it is small enough in magnitude to be treated as an O( E 2) perturbation of the zero eigenvalue of A.
Keywords :
Bauer–Fike theorem , Relative perturbation bounds
Journal title :
Linear Algebra and its Applications
Journal title :
Linear Algebra and its Applications