Title of article :
Maps on spaces of symmetric matrices preserving idempotence Original Research Article
Author/Authors :
Yu Qiu Sheng، نويسنده , , Bao Dong Zheng، نويسنده , , Xian Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
10
From page :
576
To page :
585
Abstract :
Suppose F is an arbitrary field. Let F be the number of the elements of F. Let Mn(F) be the space of all n×n matrices over F, and let Sn(F) be the subset of Mn(F) consisting of all symmetric matrices. Let Vset membership, variant{Sn(F),Mn(F)}, a map Φ:V→V is said to preserve idempotence if A-λB is idempotent if and only if Φ(A)-λΦ(B) is idempotent for any A,Bset membership, variantV and λset membership, variantF. It is shown that: when the characteristic of F is not 2, F>3 and ngreater-or-equal, slanted4, Φ:Sn(F)→Sn(F) is a map preserving idempotence if and only if there exists an invertible matrix Pset membership, variantMn(F) such that Φ(A)=PAP-1 for every Aset membership, variantSn(F) and PtP=aIn for some nonzero scalar a in F.
Keywords :
Symmetric matrix , Field , Idempotence
Journal title :
Linear Algebra and its Applications
Serial Year :
2007
Journal title :
Linear Algebra and its Applications
Record number :
825437
Link To Document :
بازگشت