Title of article :
Primitive graphs with given exponents and minimum number of edges Original Research Article
Author/Authors :
Byeong Moon Kim، نويسنده , , Byung Chul Song، نويسنده , , Woonjae Hwang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
15
From page :
648
To page :
662
Abstract :
A graph G = (V, E) on n vertices is primitive if there is a positive integer k such that for each pair of vertices u, v of G, there is a walk of length k from u to v. The minimum value of such an integer, k, is the exponent, exp(G), of G. In this paper, we find the minimum number, h(n, k), of edges of a simple graph G on n vertices with exponent k, and we characterize all graphs which have h(n, k) edges when k is 3 or even.
Keywords :
Exponent , Primitive graph
Journal title :
Linear Algebra and its Applications
Serial Year :
2007
Journal title :
Linear Algebra and its Applications
Record number :
825443
Link To Document :
بازگشت