Title of article :
Perturbing non-real eigenvalues of non-negative real matrices Original Research Article
Author/Authors :
Siwen Guo، نويسنده , , Wuwen Guo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
Let σ=(ρ,b+ic,b-ic,λ4,…,λn) be the spectrum of an entry non-negative matrix and tgreater-or-equal, slanted0. Laffey [T. J. Laffey, Perturbing non-real eigenvalues of nonnegative real matrices, Electron. J. Linear Algebra 12 (2005) 73–76] has shown that σ=(ρ+2t,b-t+ic,b-t-ic,λ4,…,λn) is also the spectrum of some nonnegative matrix. Laffey (2005) has used a rank one perturbation for small t and then used a compactness argument to extend the result to all nonnegative t. In this paper, a rank two perturbation is used to deduce an explicit and constructive proof for all tgreater-or-equal, slanted0.
Keywords :
eigenvalue , Perron root , Spectrum , Non-negative matrix , inverse problem , Perturbation
Journal title :
Linear Algebra and its Applications
Journal title :
Linear Algebra and its Applications