Title of article :
The minimum rank of symmetric matrices described by a graph: A survey Original Research Article
Author/Authors :
Shaun M. Fallat، نويسنده , , Leslie Hogben، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
25
From page :
558
To page :
582
Abstract :
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. This paper surveys the current state of knowledge on the problem of determining the minimum rank of a graph and related issues.
Keywords :
graph , Rank , Symmetric matrix , matrix , Minimum rank , Inverse eigenvalue problem
Journal title :
Linear Algebra and its Applications
Serial Year :
2007
Journal title :
Linear Algebra and its Applications
Record number :
825721
Link To Document :
بازگشت