Title of article :
A reverse inequality for the weighted geometric mean due to Lawson–Lim Original Research Article
Author/Authors :
Jun Ichi Fujii، نويسنده , , Masatoshi Fujii، نويسنده , , Masahiro Nakamura، نويسنده , , Josip Pe?ari?، نويسنده , , Yuki Seo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
13
From page :
272
To page :
284
Abstract :
In this note, we present an alternative proof of the power convergence of the symmetrization procedure on the weighted geometric mean due to Lawson and Lim in [J. Lawson and Y. Lim, A general framework for extending means to higher orders, preprint] by using a limiting process due to Ando-Li-Mathias in [T. Ando, C.-K. Li, R. Mathias, Geometric means, Linear Algebra Appl. 385 (2004) 305–334]. As applications, we obtain a reverse of the weighted arithmetic-geometric mean inequality of n-operators via Kantorovich constant: For any positive integer ngreater-or-equal, slanted2, let A1,A2,…,An be positive invertible operators on a Hilbert space H such that 0
Keywords :
Geometric mean of n-operators , Positive operator , Kantorovich constant , Specht ratio , Reverse inequality
Journal title :
Linear Algebra and its Applications
Serial Year :
2007
Journal title :
Linear Algebra and its Applications
Record number :
825763
بازگشت