Title of article :
Polynomial numerical hulls of matrices Original Research Article
Author/Authors :
Chandler Davis، نويسنده , , Chi-Kwong Li، نويسنده , , Abbas Salemi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
17
From page :
137
To page :
153
Abstract :
For any n-by-n complex matrix A, we use the joint numerical range W(A,A2,…,Ak) to study the polynomial numerical hull of order k of A, denoted by Vk(A). We give an analytic description of V2(A) when A is normal. The result is then used to characterize those normal matrices A satisfying V2(A)=σ(A), and to show that a unitary matrix A satisfies V2(A)=σ(A) if and only if its eigenvalues lie in a semicircle, where σ(A) denotes the spectrum of A. When A=diag(1,w,…,wn-1) with w=ei2π/n, we determine Vk(A) for image. We also consider matrices Aset membership, variantMn such that A2 is Hermitian. For such matrices we show that V4(A) is the spectrum of A, and give a description of the set V2(A).
Keywords :
joint numerical range , Normal matrix , Polynomial numerical hull
Journal title :
Linear Algebra and its Applications
Serial Year :
2007
Journal title :
Linear Algebra and its Applications
Record number :
825773
Link To Document :
بازگشت