Title of article :
Fast QR factorization of Cauchy-like matrices Original Research Article
Author/Authors :
Luca Gemignani، نويسنده , , Marc Van Barel، نويسنده , , Steven Delvaux and Leon Horsten ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
15
From page :
697
To page :
711
Abstract :
In this paper, we present two fast numerical methods for computing the QR factorization of an n×n Cauchy-like matrix C, C=QR, with data points lying on the real axis or on the unit circle in the complex plane. It is shown that the rows of the Q-factor of C are the eigenvectors of a rank structured matrix partially determined by some prescribed spectral data. This property establishes a basic connection between the computation of Q and the solution of an inverse eigenvalue problem for a rank structured matrix. Exploiting the structure of this problem enables us to develop quadratic time, i.e., O(n2), QR factorization algorithms.
Keywords :
Inverse eigenvalue problems , Quasiseparable matrices , Displacement structured matrices , Cauchy-like matrices
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
825804
Link To Document :
بازگشت