Title of article :
Lipschitz stability of canonical Jordan bases of H-selfadjoint matrices under structure-preserving perturbations Original Research Article
Author/Authors :
T. Bella، نويسنده , , V. Olshevsky، نويسنده , , Sai U. Prasad، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
47
From page :
2130
To page :
2176
Abstract :
In this paper we study Jordan-structure-preserving perturbations of matrices selfadjoint in the indefinite inner product. The main result of the paper is Lipschitz stability of the corresponding affiliation matrices. The result can be reformulated as Lipschitz stability, under small perturbations, of canonical Jordan bases (i.e., eigenvectors and generalized eigenvectors enjoying a certain flipped orthonormality relation) of matrices selfadjoint in the indefinite inner product. The proof relies upon the analysis of small perturbations of invariant subspaces, where the size of a permutation of an invariant subspace is measured using the concepts of a gap and of a semigap.
Keywords :
Canonical Jordan bases , Gaps , Invariant subspaces , Structure-preserving perturbations , Perturbations , Indefinite inner product
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
825913
Link To Document :
بازگشت