Title of article :
The minimal spectral radius of graphs of order n with diameter n-4 Original Research Article
Author/Authors :
Xi-ying Yuan، نويسنده , , Jia-Yu Shao، نويسنده , , Yue Liu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
12
From page :
2840
To page :
2851
Abstract :
In this paper we determine the graphs which have the minimal spectral radius (i.e., the largest eigenvalue of its corresponding adjacency matrix) among all the graphs of order n with the diameter D=n-4. This result settles a problem proposed in [E.R. van Dam, R.E. Kooij, The minimal spectral radius of graphs with a given diameter, Linear Algebra Appl. 423 (2007) 408–419], which is also the special case D=n-4 of the Conjecture 8 in van Dam and Kooij (2007).
Keywords :
graphs , Diameter , Spectral radius
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
825963
Link To Document :
بازگشت