Title of article :
Graphs for which the least eigenvalue is minimal, II Original Research Article
Author/Authors :
Francis K. Bell، نويسنده , , Drago? Cvetkovi?، نويسنده , , Peter Rowlinson، نويسنده , , Slobodan K. Simi?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
12
From page :
2168
To page :
2179
Abstract :
We continue our investigation of graphs G for which the least eigenvalue λ(G) is minimal among the connected graphs of prescribed order and size. We provide structural details of the bipartite graphs that arise, and study the behaviour of λ(G) as the size increases while the order remains constant. The non-bipartite graphs that arise were investigated in a previous paper [F.K. Bell, D. Cvetković, P. Rowlinson, S.K. Simić, Graphs for which the least eigenvalue is minimal, I, Linear Algebra Appl. (2008), doi: 10.1016/j.laa.2008.02.032]; here we distinguish the cases of bipartite and non-bipartite graphs in terms of size.
Keywords :
Largest eigenvalue , Least eigenvalue , Graph spectrum , bipartite graph
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
826137
Link To Document :
بازگشت