Title of article :
Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values
Author/Authors :
P. LIVIERI، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
30
From page :
247
To page :
276
Abstract :
Weld bead geometry cannot, by its nature, be precisely defined. Parameters such as bead shape and toe radius vary from joint to joint even in well-controlled manufacturing operations. In the present paper the weld toe region is modelled as a sharp, zero radius, V-shaped notch and the intensity of asymptotic stress distributions obeying Williams’ solution are quantified by means of the Notch Stress Intensity Factors (NSIFs). When the constancy of the angle included between weld flanks and main plates is assured and the angle is large enough to make mode II contribution nonsingular, mode I NSIF can be directly used to summarise the fatigue strength of welded joints having very different geometry. By using a large amount of experimental data taken from the literature and related to a V-notch angle of 135◦, two NSIF-based bands are reported for steel and aluminium welded joints under a nominal load ratio about equal to zero. A third band is reported for steel welded joints with failures originated from the weld roots, where the lack of penetration zone is treated as a crack-like notch and units for NSIFs are the same as conventional SIF used in LEFM. Afterwards, in order to overcome the problem related to the variability of the V-notch opening angle, the synthesis is made by simply using a scalar quantity, i.e. the mean value of the strain energy averaged in the structural volume surrounding the notch tips. This energy is given in closed form on the basis of the relevant NSIFs for modes I and II and the radius RC of the averaging zone is carefully identified with reference to conventional arc welding processes. RC for welded joints made of steel and aluminium considered here is 0.28mm and 0.12 mm, respectively. Different values of RC might characterise welded joints obtained from high-power processes, in particular from automated laser beam welding. The local-energy based criterion is applied to steel welded joints under prevailing mode I (with failures both at the weld root and toe) and to aluminium welded joints under mode I and mixed load modes (with mode II contribution prevailing on that ascribable to mode I). Surprising, the mean value of W related to the two groups of welded materials was found practically coincident at 2 million cycles. More than 750 fatigue data have been considered in the analyses reported herein.
Keywords :
welded joints. , Elasticity , Energy , Fatigue strength , Notch stress intensity factor , Stress intensity factor
Journal title :
International Journal of Fracture
Serial Year :
2005
Journal title :
International Journal of Fracture
Record number :
828293
Link To Document :
بازگشت