• Title of article

    Stress stability and thermo-mechanical properties of reactively sputtered alumina films

  • Author/Authors

    M. P. HUGHEY، نويسنده , , R. F. COOK، نويسنده , , J. THURN، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2005
  • Pages
    11
  • From page
    6345
  • To page
    6355
  • Abstract
    The stability of residual stress inherent on deposition in reactively sputtered alumina films is studied during thermal cycling and annealing, simulating temperature excursions experienced by the films during device fabrication and subsequent operation. Increasing the magnitude of substrate bias applied during deposition acts to reduce the amount of argon incorporated in the films; more incorporated argon corresponds to smaller values of modulus and hardness and a larger coefficient of thermal expansion (CTE). Large, irreversible changes in film stress develop on heating, acting to decrease the compressive residual stress of films deposited on silicon substrates to a smaller, equilibrium value, whereas films deposited on Al2O3-TiC substrates behave differently. Thermal cycling and annealing have little effect on the modulus and CTE, but the hardness increases significantly and the threshold load for indentation crack initiation decreases precipitously during heat treatment. Possible mechanisms of irreversible stress development and mechanical property modifications are discussed. C 2005 Springer Science + Business Media, Inc.
  • Journal title
    Journal of Materials Science
  • Serial Year
    2005
  • Journal title
    Journal of Materials Science
  • Record number

    830449