Title of article :
Atmospheric pressure chemical vapor deposition of transparent conducting films of fluorine doped zinc oxide and their application to amorphous silicon solar cells
Author/Authors :
Haifan Liang، نويسنده , , Roy G. Gordon، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
12
From page :
6388
To page :
6399
Abstract :
Transparent conducting ZnO:F was deposited as thin films on soda lime glass substrates by atmospheric pressure chemical vapor deposition (CVD) deposition at substrate temperatures of 480–500 C. The precursors diethylzinc, tetramethylethylenediamine and benzoyl fluoride were dissolved in xylene. The solution was nebulized ultrasonically and then flash vaporized by a carrier gas of nitrogen preheated to 150 C. Ethanol was vaporized separately, and these vapors were then mixed to form a homogeneous vapor mixture. Good reproducibility was achieved using this new CVD method. Uniform thicknesses were obtained by moving the heated glass substrates through the deposition zone. The best electrical and optical properties were obtained when the precursor solution was aged for more than a week before use. The films were polycrystalline and highly oriented with the c-axis perpendicular to the substrate. The electrical resistivity of the films was as low as 5 · 10–4 Wcm. The mobility was about 45 cm2/Vs. The electron concentration was up to 3 · 1020/cm3. The optical absorption of the films was about 3–4% at a sheet resistance of 7 W/square. The diffuse transmittance was about 10% at a thickness of 650 nm. Amorphous silicon solar cells were deposited using the textured ZnO:F films as the front electrode. The short circuit current was increased over similar cells made with fluorine doped tin oxide, but the voltages and fill factors were reduced. The voltage was restored by overcoating the ZnO:F with a thin layer of SnO2:F.
Journal title :
Journal of Materials Science
Serial Year :
2007
Journal title :
Journal of Materials Science
Record number :
833271
Link To Document :
بازگشت