Title of article :
Modeling of evolving damage in high temperature polymer matrix composites subjected to thermal oxidation
Author/Authors :
Samit Roy، نويسنده , , Sushil Singh، نويسنده , , Gregory A. Schoeppner، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
10
From page :
6651
To page :
6660
Abstract :
This paper describes mechanism-based modeling of damage evolution in high temperature polymer matrix composites (HTPMC) under thermo-oxidative aging conditions. Specifically, a multi-scale model based on micro-mechanics analysis in conjunction with continuum damage mechanics (CDM) is developed to simulate the accelerated fiber–matrix debond growth in the longitudinal direction of a unidirectional HTPMC. Using this approach, one can relate the behavior of composites at the micro-level (representative volume element) to the macro-level (structural element) in a computationally tractable manner. Thermo-oxidative aging is simulated with diffusion-reaction model in which temperature, oxygen concentration, and weight loss effects are considered. For debond growth simulation, a model based on Darcy’s laws for oxygen permeation in the fiber–matrix interface is employed, that, when coupled with polymer shrinkage, provides a mechanism for permeation-controlled debond growth in HTPMC. Benchmark of model prediction with experimental observations of oxidation layer growth is presented, together with a laminate thermo-oxidative life prediction model based on CDM to demonstrate proof-of-concept.
Journal title :
Journal of Materials Science
Serial Year :
2008
Journal title :
Journal of Materials Science
Record number :
834706
Link To Document :
بازگشت