Title of article :
Hypoelliptic heat kernel inequalities on the Heisenberg group
Author/Authors :
Bruce K. Driver، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
26
From page :
340
To page :
365
Abstract :
We study the existence of “Lp-type” gradient estimates for the heat kernel of the natural hypoelliptic “Laplacian” on the real three-dimensional Heisenberg Lie group. Using Malliavin calculus methods, we verify that these estimates hold in the case p>1. The gradient estimate for p=2 implies a corresponding Poincaré inequality for the heat kernel. The gradient estimate for p = 1 is still open; if proved, this estimate would imply a logarithmic Sobolev inequality for the heat kernel. © 2004 Elsevier Inc. All rights reserved.
Keywords :
Heisenberg group , Heat kernels , Hypoellipticity , Malliavin calculus
Journal title :
Journal of Functional Analysis
Serial Year :
2005
Journal title :
Journal of Functional Analysis
Record number :
838884
Link To Document :
بازگشت