Title of article :
Fractal entropies andd imensions for microstates spaces
Author/Authors :
Kenley Jung، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
35
From page :
217
To page :
251
Abstract :
Using Voiculescu’s notion of a matricial microstate we introduce fractal dimensions and entropies for finite sets of selfadjoint operators in a tracial von Neumann algebra. We show that they possess properties similar to their classical predecessors. We relate the new quantities to free entropy and free entropy dimension and show that a modified version of free Hausdorff dimension is an algebraic invariant. We compute the free Hausdorff dimension in the cases where the set generates a finite-dimensional algebra or where the set consists of a single selfadjoint. We show that the Hausdorff dimension becomes additive for such sets in the presence of freeness. © 2004 Elsevier Inc. All rights reserved.
Keywords :
Free Probability , Hausdorff dimension , Microstate , Free entropy , Hausdorff measure
Journal title :
Journal of Functional Analysis
Serial Year :
2005
Journal title :
Journal of Functional Analysis
Record number :
838899
Link To Document :
بازگشت