Title of article :
Skorohod integration and stochastic calculus beyond the fractional Brownian scale
Author/Authors :
Oana Mocioalcaa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
50
From page :
385
To page :
434
Abstract :
We extend the Skorohod integral, allowing integration with respect to Gaussian processes that can be more irregular than any fractional Brownian motion. This is done by restricting the class of test random variables used to define Skorohod integrability. A detailed analysis of the size of this class is given; it is proved to be non-empty even for Gaussian processes which are not continuous on any closed interval. Despite the extreme irregularity of these stochastic integrators, the Skorohod integral is shown to be uniquely defined, and to be useful: an Ito formula is established; it is employed to derive a Tanaka formula for a corresponding local time; linear additive and multiplicative stochastic differential equations are solved; an analysis of existence for the stochastic heat equation is given. © 2004 Elsevier Inc. All rights reserved.
Keywords :
local time , Stochastic differential equations , Stochastic heat equation , Skorohod integral , Malliavin calculus , Ito formula , fractional Brownian motion , Gaussianprocesses
Journal title :
Journal of Functional Analysis
Serial Year :
2005
Journal title :
Journal of Functional Analysis
Record number :
838904
Link To Document :
بازگشت